BioC: a minimalist approach to interoperability for biomedical text processing

Don Comeau
Outline

• Background and origin of BioC
• What is BioC?
• Available Tools and Corpora
BioCreative

• Critical Assessment of Information Extraction systems in Biology
• Five workshops since 2004
• Shared tasks:
 – Gene mention
 – Gene normalization
 – Protein-protein interaction
 – Document triage
 – Interactive annotation
 – GO annotations
The problem

• Many research groups
• Many local data formats
• Many tools
• Hard to build on external tools
Objectives

• Simplicity
• Interoperability
• Broad use and reuse
BioC

• Data format
 – XML DTD

• Code to read and write data
 – Data directly available
BioC classes containing input data

Data Processing

BioC classes containing output data

Input Connector

BioC XML input

Output Connector

BioC XML output
File format

• XML:
 – Easily written and read
 – Portable
 – Familiar
BioC DTD

<!ELEMENT collection (source, date, key, infon*, document+) >
<!ELEMENT source (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT key (#PCDATA)>
<!ELEMENT infon (#PCDATA)>
<!ATTLIST infon key CDATA #REQUIRED >
<!ELEMENT document (id, infon*, passage+, relation* +) >
<!ELEMENT id (#PCDATA)>

<!ELEMENT passage(infon*, offset, ((text?, annotation*) | sentence*), relation*) >
<!ELEMENT offset (#PCDATA)>
<!ELEMENT text (#PCDATA)>

<!ELEMENT sentence (infon*, offset, text?, annotation*, relation*) >

<!ELEMENT annotation (infon*, location*, text) >
<!ATTLIST annotation id CDATA #IMPLIED >
<!ELEMENT location EMPTY>
<!ATTLIST location offset CDATA #REQUIRED >
<!ATTLIST location length CDATA #REQUIRED >

<!ELEMENT relation (infon*, node*) >
The efficacy of computed tomography (CT) screening for early lung cancer detection in heavy smokers is currently being tested by a number of randomized trials. Critical issues remain the frequency of unnecessary treatments and impact on mortality, indicating the need for biomarkers of aggressive disease.
BioC DTD (relations)

```xml
<!ELEMENT collection ( source, date, key, infon*, document+ ) >
...

<!ELEMENT annotation ( infon*, location*, text ) >
<!ATTLIST annotation id CDATA #IMPLIED >
<!ELEMENT location EMPTY>
<!ATTLIST location offset CDATA #REQUIRED >
<!ATTLIST location length CDATA #REQUIRED >

<!ELEMENT relation ( infon*, node* ) >
<!ATTLIST relation id CDATA #IMPLIED >
<!ELEMENT node EMPTY>
<!ATTLIST node refid CDATA #REQUIRED >
<!ATTLIST node role CDATA "" >
```

Annotation: information

Annotation: text

Relation: Annotations or relations
<DOCTYPE collection SYSTEM "BioC.dtd">
<collection>
<source>PubMed Central</source>
<date>20130123</date>
<key>exampleAnnotation.key</key>
<document>
<id>PMC3048155</id>
<passage>
<infon key = "type">paragraph</infon>
<offset>0</offset>
<sentence>
<offset>0</offset>
<annotation id = "0">
<infon key = "type">disease name</infon>
<infon key = "MeSH">D008175</infon>
<location offset = "61" length = "11"/>
<text>lung cancer</text>
</annotation>
</sentence>
</passage>
</document>
</collection>
<annotation id = "0">
 <infon key = "type">disease name</infon>
 <infon key = "MeSH">D008175</infon>
 <location offset = "61" length = "11" />
 <text>lung cancer</text>
</annotation>
The efficacy of computed tomography (CT) screening for early lung cancer detection in heavy smokers is currently being tested by a number of randomized trials.
The efficacy of computed **tomography** (CT) screening for early lung cancer detection in heavy smokers is currently being tested by a number of randomized trials.

<table>
<thead>
<tr>
<th>id</th>
<th>infon</th>
<th>location</th>
<th>text</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>PartOfSpeech:NN</td>
<td>25</td>
<td>10</td>
<td>tomography</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Part of speech tagging</td>
</tr>
</tbody>
</table>
The efficacy of computed tomography (CT) screening for early lung cancer detection in heavy smokers is currently being tested by a number of randomized trials.

<table>
<thead>
<tr>
<th>id</th>
<th>key:value</th>
<th>location</th>
<th>text</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>PartOfSpeech:NN</td>
<td>25</td>
<td>10</td>
<td>tomography</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Part of speech tagging</td>
</tr>
<tr>
<td>L14</td>
<td>lemma:smoker</td>
<td>92</td>
<td>7</td>
<td>smokers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lemmatization of token</td>
</tr>
</tbody>
</table>
The efficacy of **computed tomography** (CT) screening for early lung cancer detection in heavy smokers is currently being tested by a number of randomized trials.

<table>
<thead>
<tr>
<th>id</th>
<th>infon key:value</th>
<th>location offset</th>
<th>length</th>
<th>text</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>PartOfSpeech:NN</td>
<td>25</td>
<td>10</td>
<td>tomography</td>
<td>Part of speech tagging</td>
</tr>
<tr>
<td>L14</td>
<td>lemma:smoker</td>
<td>92</td>
<td>7</td>
<td>smokers</td>
<td>Lemmatization of token</td>
</tr>
<tr>
<td>A1</td>
<td>ABRV:Long Form</td>
<td>16</td>
<td>19</td>
<td>computed tomography</td>
<td>Abbreviation definition in text</td>
</tr>
<tr>
<td>A2</td>
<td>ABRV:Short Form</td>
<td>37</td>
<td>2</td>
<td>CT</td>
<td>Abbreviation in text</td>
</tr>
</tbody>
</table>
The efficacy of computed tomography (CT) screening for early **lung cancer** detection in heavy smokers is currently being tested by a number of randomized trials.

<table>
<thead>
<tr>
<th>id</th>
<th>in fon key:value</th>
<th>location offset</th>
<th>location length</th>
<th>text</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>PartOfSpeech:NN</td>
<td>25</td>
<td>10</td>
<td>tomography</td>
<td>Part of speech tagging</td>
</tr>
<tr>
<td>L14</td>
<td>lemma:smoker</td>
<td>92</td>
<td>7</td>
<td>smokers</td>
<td>Lemmatization of token</td>
</tr>
<tr>
<td>A1</td>
<td>ABRV:Long Form</td>
<td>16</td>
<td>19</td>
<td>computed tomography</td>
<td>Abbreviation definition in text</td>
</tr>
<tr>
<td>A2</td>
<td>ABRV:Short Form</td>
<td>37</td>
<td>2</td>
<td>CT</td>
<td>Abbreviation in text</td>
</tr>
<tr>
<td>D1</td>
<td>type:disease</td>
<td>61</td>
<td>11</td>
<td>lung cancer</td>
<td>Disease name mention in text</td>
</tr>
<tr>
<td></td>
<td>MeSH:D008175</td>
<td></td>
<td></td>
<td></td>
<td>Concept in terminology resource</td>
</tr>
</tbody>
</table>
The efficacy of **computed tomography (CT) screening** for early lung cancer detection in heavy smokers is currently being tested by a number of randomized trials.

<table>
<thead>
<tr>
<th>id</th>
<th>infor key:value</th>
<th>location</th>
<th>text</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>PartOfSpeech:NN</td>
<td>25, 10</td>
<td>tomography</td>
<td>Part of speech tagging</td>
</tr>
<tr>
<td>L14</td>
<td>lemma:smoker</td>
<td>92, 7</td>
<td>smokers</td>
<td>Lemmatization of token</td>
</tr>
<tr>
<td>A1</td>
<td>ABRV:Long Form</td>
<td>16, 19</td>
<td>computed tomography</td>
<td>Abbreviation definition in text</td>
</tr>
<tr>
<td>A2</td>
<td>ABRV:Short Form</td>
<td>37, 2</td>
<td>CT</td>
<td>Abbreviation in text</td>
</tr>
<tr>
<td>D1</td>
<td>type:disease</td>
<td>61, 11</td>
<td>lung cancer</td>
<td>Disease name mention in text</td>
</tr>
<tr>
<td></td>
<td>MeSH:D008175</td>
<td></td>
<td></td>
<td>Concept in terminology resource</td>
</tr>
<tr>
<td>E1</td>
<td>type:event</td>
<td>16, 19</td>
<td>computed tomography ...</td>
<td>Segmented mention annotation</td>
</tr>
</tbody>
</table>
Tat mostly activated the MIP-1alpha expression in a p65-dependent manner.

E1: Gene_expression / Trigger: expression / Theme: MIP-1alpha

E2: Positive_regulation / Trigger: activated / Theme: **E1** / Cause: Tat

E3: Positive_regulation / Trigger: -dependent / Theme: **E2** / Cause: p65
Tat mostly activated the MIP-1alpha expression in a p65-dependent manner.

Tat mostly activated the MIP-1alpha expression in a p65-dependent manner.
Tat mostly activated the MIP-1alpha expression in a p65-dependent manner.
Semantics

• Not prescribed by BioC
• No way to predict all uses and applications
• Specified in keyfile
• Standard task, use existing keyfile
exampleCollection.key

This key file describes the contents of the BioC XML file exampleCollection.xml.

collection: This collection is a simple two-sentence excerpt from an arbitrary PMC article (PMC3048155).

source: PMC (ASCII)

date: yyyyymmdd. Date this example was created.

key: This file

document: this collection contains one document.

id: PubMed Central ID

passage: the first two sentences of the abstract

infon type: paragraph

offset: Article arbitrarily starts at 0.

text: the passage text from the original document.
Abbreviation key file

annotation: Abbreviations
id: sequential integers from 0 prefixed by either 'SF' or 'LF'
infon["type"]: "ABBR"
infon["ABBR"]: "ShortForm" or "LongForm"
location: offset: A document offset to where the annotated text begins in the passage or sentence.
length: The length of the annotated text.
text: Original text of the short form or long form.

relation: Long form / short form pair
id: sequential integers from 0 prefixed by 'R'
infon["type"]: "ABBR"
node:
 role: "ShortForm" or "LongForm"
refid: id of the appropriate annotation
Implementation

• Clear division between:
 – BioC data classes
 – connector classes to read/write the data (via an XML parser)
 – application code.

• Reading and writing data:
 – Fit entire corpus into memory at once, or
 – Process documents one by one
class Node {
 // id of Relation or Annotation
 string refid;
 string role;
};

class Relation {
 string id;
 map<string,string> infons;
 vector<Node> nodes;
};

class Location {
 int offset;
 int length;
};

class Annotation {
 string id;
 map<string,string> infons;
 vector<Location> locations;
 string text;
};

class Sentence {
 map<string,string> infons;
 int offset;
 string text;
 vector<Annotation> annotations;
};

class Passage {
 map<string,string> infons;
 int offset;
 string text;
 vector<Sentence> sentences;
 vector<Annotation> annotations;
};

class Document {
 string id;
 map<string,string> infons;
 vector<Passage> passages;
};

class Collection {
 string corpus;
 int date;
 string key;
 map<string,string> infons;
 vector<Document> documents;
};
BioCreative IV Track 1

• Interoperability track in BioCreative IV invited participants to contribute new NLP modules to the BioC environment
• 9 accepted papers
Implementations

• C++
• Java (2)
• Python (2)
• Perl
• Go
• Ruby
Corpora

• Abbreviation
 – Ab3P, BIOADI, old Medstract, Schwartz & Hearst
• Disease
• BioNLP Shared Task (4)
• Human Variome Project
• iSimp
• Metabolites
• GO, PMC
• WBI repository (18 corpora)
<table>
<thead>
<tr>
<th>Corpus</th>
<th>Description</th>
<th>License</th>
<th>BioC</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeneReg</td>
<td>regulation of gene expression</td>
<td>corpus</td>
<td></td>
</tr>
<tr>
<td>GENIA term annotation</td>
<td></td>
<td>corpus</td>
<td></td>
</tr>
<tr>
<td>GETM</td>
<td>gene expression in anatomical locations</td>
<td>corpus</td>
<td></td>
</tr>
<tr>
<td>GREC</td>
<td>gene regulation</td>
<td>E. coli</td>
<td></td>
</tr>
<tr>
<td>HPRD50</td>
<td>protein-protein interactions</td>
<td>corpus</td>
<td></td>
</tr>
<tr>
<td>IEPA</td>
<td>protein-protein interactions</td>
<td>corpus</td>
<td></td>
</tr>
<tr>
<td>LLL</td>
<td>protein-protein interactions</td>
<td>corpus</td>
<td></td>
</tr>
<tr>
<td>OSIRIS</td>
<td>human variations</td>
<td>corpus</td>
<td></td>
</tr>
<tr>
<td>PICAD</td>
<td>protein-protein interactions</td>
<td>corpus</td>
<td></td>
</tr>
<tr>
<td>SCAI</td>
<td>chemical compounds</td>
<td>chemicals</td>
<td></td>
</tr>
<tr>
<td>SNPCorpus</td>
<td>variations</td>
<td>corpus</td>
<td></td>
</tr>
<tr>
<td>Variome Corpus</td>
<td>genetic variation</td>
<td>corpus</td>
<td></td>
</tr>
</tbody>
</table>

* For the five protein-protein interaction corpora (AIMed, BioInfer, HPRD50, IEPA, LLL), we have used [license](http://www.license.com).
Conversions

- BioNLP Shared Task
- brat
- PubTator
- Argo
Tools

- Sentence segmenting
- Tokenizing
- Part-of-speech tagging
- Lemmatization
- Dependency parsing
- Syntactic parsing
- Sentence simplifying
- Semantic role labeling

- Abbreviation identification
- Named entity recognition
 - Diseases
 - Mutations
 - Species
 - Chemicals
 - Genes / Proteins
- Manual annotation
Available

• Online
 – Argo
 – BioC-BIOSMILE
 – iSimp
 – Ontogene

• Download
 – NLP pipelines: C++ and Java
 – Abbreviation: S&H, Ab3P, NatLAb
 – tmBioC
 – brat2BioC
Success Stories

• BioCreative IV
 – Gene Ontology (GO) curation task
 – Interactive Curation task (IAT)
 – Comparative Toxicogenomics Database (CTD) Curation task

• BioNLP 2013 shared task contributed resource
CTD Story

• BioCreative III Track CTD Triage
• Impressive results
• Little direct benefit to CTD
• Did not easily integrate into existing pipeline
• BioCreative IV CTD Track
 – Web service
 – BioC format
• Results now useful
Thanks: John Wilbur’s group

- Rezarta Islamaj Doğan
- Sun Kim
- Won Kim
- Haibin Liu
- Wanli Liu
- Natalie Xie
- Lana Yeganova
Thanks: BioC committee

- Paolo Ciccarese, MIND Informatics, Massachusetts General Hospital, Harvard Medical School
- Kevin Bretonnel Cohen, University of Colorado School of Medicine
- Donald C. Comeau, National Center for Biotechnology Information
- Martin Krallinger, Spanish National Cancer Research Centre
- Lynette Hirschman, The MITRE Corporation
- Rezarta Islamaj Doğan, National Center for Biotechnology Information
- Florian Leitner, Spanish National Cancer Research Centre
- Zhiyong Lu, National Center for Biotechnology Information
- Yifan Peng, University of Delaware Center for Bioinformatics & Computational Biology
- Fabio Rinaldi, University of Zurich
- Manabu Torii, University of Delaware Center for Bioinformatics & Computational Biology
- Alfonso Valencia, Spanish National Cancer Research Centre
- Karin Verspoor, National ICT Australia
- Thomas C. Wiegers, Department of Biology at North Carolina State University
- W. John Wilbur, National Center for Biotechnology Information
- Cathy H. Wu, University of Delaware Center for Bioinformatics & Computational Biology
URL

• http://bioc.sourceforge.net/
Addressing the reuse problem

- Object oriented programming
- XML data formatting
- GATE
- UIMA
- GrAF
Target audience --- those:

- Developing new techniques
- Using natural language processing
- Producing features for machine learning
- Using text corpora
- Building upon and beyond existing tools
The difference of the new proposal

• Simplicity of use
• There should be little investment to learn to use a format or a software module to process that format
• This will reduce the burden of sharing
BioC classes containing input data

Data Processing

BioC classes containing output data

Input Connector

BioC XML input

Output Connector

BioC XML output
BioC classes containing input data

Data Processing

BioC classes containing output data

Input Connector

BioC XML input

Output Connector

BioC XML output
Clinical Data

• BioC can represent clinical text and annotations
 – Based on modest sample of clinical data (2010 i2b2)
 – Based on a few conversations with clinical text researchers
What about other formats?

• BioC is simple
• Does not handle all of the complexity and subtleties of other formats
• Maybe a useful import / export format
• Maybe useful paired with other structured data storage
• Argo (Manchester) works with BioC and UIMA